SUMMARY

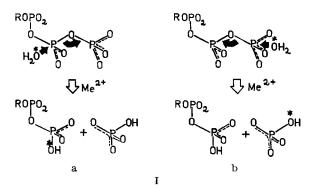
The α -methyl- and β -methylcyclogeraniolenes, isolated by vapor-phase prepararative chromatography from the cyclisation products of dihydromyrcenes are described. Evidence, by NMR. and IR. spectroscopy, is presented for their structures. The γ -methylcyclogeraniolene is present in the cyclisation products to a very small extent if present at all.

Laboratoires de Recherches de GIVAUDAN, Société Anonyme, Vernier-Genève

BIBLIOGRAPHIE

- [1] CXCIVème comm., Helv. 47, 1617 (1964).
- [2] F. TIEMANN & F. W. SEMMLER, Ber. deutsch. chem. Ges. 26, 2724 (1893).
- [3] F. W. Semmler Ber. deutsch. chem. Ges. 34, 3126 (1901). Bull. Schimmel oct. 1911, 129.
- [4] G. DUPONT & V. DESREUX, a) C. r. hebd. Séances Acad. Sci. 203, 624 (1936); b) Bull. Soc. chim. France [5] 4, 430 (1937).
- [5] L. A. GOLDBLATT & S. PALKIN, J. Amer. chem. Soc. 63, 3522 (1941); E. N. FARMER & D. A. SUTTON, J. chem. Soc. 1942, 145; R. F. NAYLOR, ibid. 1947, 1537.
- [6] G. A. HOWARD & R. STEVENS, J. chem. Soc. 1960, 163.
- [7] G. DUPONT, R. DULOU & R. DESREUX, Bull. Soc. chim. France [5] 6, 83 (1939).
- [8] E. Chablay, Ann. Chim. [9] 8, 193 (1917).
- [9] F. W. SEMMLER, Ber. deutsch. chem. Ges. 27, 2521 (1894).
- [10] K. Auwers & W. Moosbrugger, Liebigs Ann. Chem. 387, 189 (1912).
- [11] R. ESCOURROU, Bull. Soc. chim. France [4] 39, 1460 (1926); [4] 43, 1277 (1928).
- [12] G. C. OPPENLANDER & D. R. DAY, J. org. Chemistry 21, 961 (1956).
- [13] M. TIFFENEAU, C. r. hebd. Séances Acad. Sci. 146, 1153 (1908).
- [14] L. M. Jackman, Applications of NMR. Spectroscopy in Organic Chemistry, p. 119, Pergamon Press, London 1959.
- [15] R. B. BATES & D. M. GALE, J. Amer. chem. Soc. 82, 5750 (1960).
- [16] R. B. Bates, R. H. Carnighan, R. O. Rakutis & S. H. Schauble, Chemistry & Ind. 1962, 1020.
- [17] Y.-R. NAVES, Ball. Soc. chim. France 1956, 298.
- [18] L. J. Bellamy, The Infrared Spectra of Complex Molecules, 2nd ed., p. 63, Methuen & Co. Ltd., London 1958.
- [19] Y.-R. NAVES & J. LECOMTE, C. r. hebd. Séances Acad. Sci. 233, 389 (1951); J. LECOMTE & Y.-R. NAVES, J. Chim. physique 1956, 462.

201. Zum Mechanismus der Metallionen-katalysierten Hydrolyse von Adenosintriphosphat (ATP) II [1]¹). Reaktionsverlauf in H₂¹⁸O


von H. Moll, P. W. Schneider und H. Brintzinger

(1. VIII. 64)

1. Bei der Identifizierung der Reaktionsmechanismen der Metallionen-katalysierten Phosphat-Abspaltung aus Adenosintriphosphat (ATP) [1] ist die Frage, ob die mittlere oder die terminale Phosphatgruppe durch H₂O nucleophil substituiert wird (Ia bzw. b), von entscheidender Bedeutung (vgl. auch [2]). Um diese Frage abzu-

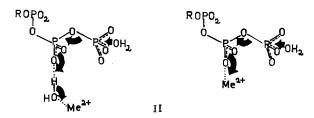
¹⁾ Die Zahlen in eckigen Klammern verweisen auf das Literaturverzeichnis, S. 1839.

klären, haben wir die Cu²⁺-katalysierte Reaktion I in H₂¹⁸O durchgeführt und das entstehende Phosphat auf seinen ¹⁸O-Gehalt untersucht.

- 2. Methodik. 2.1. Durchführung der Reaktion. 0,25 mMol frisch gefälltes $\operatorname{Cu}(OH)_2$ und 0,20 mMol $\operatorname{Na_2H_2ATP}$ (SIGMA) werden in 5,3 ml mit ^{18}O angereichertem Wasser gelöst und mit fester NaOH auf pH 5,3 eingestellt. Man lässt bei 50° reagieren, bis die Mikro-Phosphatbestimmung (s. [1]) 0,16 mMol freigesetztes Phosphat in der Reaktionslösung anzeigt (ca. 4 Std.); Gefriertrocknen der Reaktionslösung im Hochvakuum, Aufnehmen des Rückstandes in $\operatorname{H_2O}$. $\operatorname{Na^+}$ und $\operatorname{Cu^{2+}}$ werden über eine $\operatorname{H^+-Kationenaustauschersäule}$, $\operatorname{ATP^{4-}}$ und $\operatorname{ADP^{3-}}$ durch 30min. Rühren mit 5 g gereinigter Aktivkohle (Merck) entfernt. Die Lösung (enthält nur noch das nach I gebildete Phosphat in Form von $\operatorname{H_3PO_4}$) wird mit KOH auf pH 4,5 gebracht (\Rightarrow $\operatorname{KH_2PO_4}$), eingeengt und mit Äthanol gefällt. $\operatorname{KH_2PO_4}$ wird mehrmals aus $\operatorname{H_2O}$ /Äthanol umkristallisiert und im Hochvakuum bei 20° getrocknet. Ausbeute 12–18 mg (0,09–0,14 mMol); potentiometrisch ermitteltes Molekulargewicht 144 (theor. 136,1). Spuren von Feuchtigkeit werden vor der Tracerbestimmung im Hochvakuum entfernt.
- 2.2. Bestimmung des Tracergehaltes²) in KH_2PO_4 . Durch dreistündiges Erhitzen von KH_2PO_4 mit CO_2 auf 300° lässt sich ein Austausch sämtlicher O-Atome des Phosphates mit dem Sauerstoff des CO_2 erzielen [3] [4]. Die von Cohn [5] angegebene Methode zur ¹⁸O-Bestimmung lässt sich so vereinfachen und mit Substratmengen von 5–10 mg KH_2PO_4 durchführen (s. auch [4]). Die gleichmässige Tracer-Verteilung beim Äquilibrieren sowie der Eintritt von nur einem O-Atom in das entstehende Phosphat bei der Reaktion I sind der Auswertung der folgenden ¹⁸O-Analysenresultate zugrunde gelegt.
- 3. Ergebnisse von drei Reaktionsansätzen sind in der Tabelle zusammengestellt: Das bei der Spaltung in den endständigen Phosphatrest eintretende O-Atom hat einen Tracergehalt von 2,3 At.-% und stammt mithin praktisch vollständig³) aus dem wässerigen Reaktionsmilieu (Tracergehalt 3,1 At.-%); die Metallionen-katalysierte ATP-Hydrolyse verläuft nach Reaktionsweg Ib.

Der nucleophile Angriff erfolgt mithin nicht an der elektrophilsten Stelle der Phosphatkette – der β -Phosphatgruppe –, sondern vielmehr so, dass diese elektrophilste Gruppe zur Abgangsgruppe wird. Auf diese Weise wird der Übergangszustand der Phosphatabspaltung stabilisiert durch folgende zwei Faktoren: 1. die grosse Elektronendefizienz der Abgangsgruppe; 2. die elektronenliefernde und der trigonalen

²⁾ Unter »Tracergehalt» verstehen wir den Überschuss an ¹⁸O über den natürlichen Isotopengehalt von ca. 0,21 Atom-%. Demgegenüber bedeutet «¹⁸O-Gehalt» die Gesamtmenge an ¹⁸O ohne Abzug des natürlichen Gehaltes.


³⁾ Der Unterschied im Tracergehalt zwischen eintretendem Sauerstoff und wässerigem Milieu ist wahrscheinlich nicht signifikant, sondern durch Weiterlaufen der Reaktion I bei der Aufarbeitung bedingt.

Reaktions- ansatz	$ m KH_2PO_4$ $ m mg$ $ m mAtom~O$		¹⁸ O-Gehalt²) im CO ₂ nach Äquilibrierung	Tracergehalt berechnet für 1 O-Atom des KH ₂ PO ₄
1	4,6	0,135	0,460 At%	2,13 At%
2	4,9	0,144	0,488 ,,	2,25 ,,
2	6,4	0,188	0,537 ,,	2,36 ,,
3	6,0	0,176	0,529 ,,	2,35 ,,
äquilibriert mit 0.075 mMol CO ₂ vom ¹⁸ O-Gehalt 0.212 Atom-% ²)				2,27 (Mittelwert)

Tracergehalt im abgespaltenen Phosphat

Symmetrie des Übergangszustandes angepasste Substituenten-Anordnung am zu substituierenden P-Atom.

Demgegenüber spielt offenbar die Wechselwirkung zwischen dem zu substituierenden P-Atom und dem eintretenden H_2O nur eine sekundäre Rolle (s. hierzu auch [6]). Hieraus folgt, dass Brönsted- oder Lewis-Säuren – wie hydratisierte oder direkt gebundene Metallionen – nur bei Anlagerung an die β -Phosphatgruppe eine Beschleunigung der Reaktion I herbeiführen können (II, vgl. auch [1]).

Herrn Professor H. Dahn und Herrn Professor H. Erlenmeyer danken wir für Anregungen zur vorliegenden Arbeit.

Herrn P. Wyss, der an der Durchführung der Isotopen-Analysen beteiligt war, und dem Physikalisch-Chemischen Institut der Universität Basel (derzeitiger Vorsteher Professor M. Thür-Kauf), von dem wir das mit ¹⁸O angereicherte Wasser bezogen und in welchem die massenspektrometrische Bestimmung des ¹⁸O-Gehaltes im CO₂ durchgeführt wurde, danken wir für diese Mitarbeit. Schliesslich gilt unser besonderer Dank dem Schweizerischen Nationalfonds zur Förderung der Wissenschaftlichen Forschung für die unseren Arbeiten gewährte Unterstützung.

SUMMARY

In the hydrolytic cleavage of the terminal P-O-P bond of adenosine triphosphate, which is catalyzed by Cu²⁺ at pH 5-6, ¹⁸O from the aqueous reaction medium enters the terminal phosphate group. The electropositive character of the leaving group is the rate-determining factor in this reaction.

Laboratoire de chimie organique de l'Université de Lausanne Institut für Anorganische Chemie der Universität Basel

LITERATURVERZEICHNIS

- [1] I. Mitt.: P. W. Schneider & H. Brintzinger, Helv. 47, 1717 (1964).
- [2] M. Tetas & J. M. Lowenstein, Biochemistry 2, 350 (1963).
- [3] H. Dahn, H. Moll & R. Menassé, Helv. 42, 1225 (1959).
- [4] E. Cherbuliez, H. Dahn, H. Moll, H. Probst & J. Rabinowitz, Helv. 45, 1075 (1962).
- [5] M. Cohn, J. biol. Chemistry 201, 735 (1953).
- [6] W. P. Jencks in «Enzyme Models and Enzyme Structure», Upton N.Y. 1962, p. 134.